GPS Critical Infrastructure

Usage/Loss Impacts/Backups/Mitigation

R. James Caverly April 27, 2011

Critical Infrastructure GPS Depe

Summary of CI GPS Timing Usa

- Of the 18 CIKR sectors, 15 use GPS timing
- Major uses of GPS timing are for:
 - Network and phase synchronization in wireline and wireless networks (Communications/IT Sectors) used in multiple critical infrastructures
 - Precise frequency generation and stabilization for single frequency wireless networks (LMR simulcast)
 - Phase synchronization in Electric Power, Nuclear Power, and Dams/Hydroelpower sectors/subsectors
 - Process scheduling, control, and synchronization in Oil and Natural Gas/Chemical/Critical Manufacturing/DIB sectors
 - Precise time stamping of data, transactions/high-frequency trading in Bank Finance/Postal and Shipping sectors
- In general, GPS timing used in *distributed* interconnected systems that require synchronization for monitoring, control, production, transaction tracking, and or functions
- Of the 15 GPS timing using CIKR sectors, GPS timing is deemed *Essential* in 11
 - Essential in more than half of the Nation's CIKR Sectors
 - Dependence is growing over time

GPS Time and Frequency System Holdover Oscillator

It is the TFS, not the GPS Receiver alone, that should be considered as the building block for timing, frequency, and time-of-day services.

CIKR Sector Oscillators And Holdo

GPS Timing Essential CIKR Sector	Timing Accuracy Requirements*	Oscillators Used**			Least Robust Oscillator	Osc. Holdover Time
	Roquironto					(Hours)
		тсхо	OCXO	Rb		
Communications Sector	~ Nanoseconds (SONET, CDMA)		Х	Х	OCXO (HS)	24 +
Emergency Services Sector	~ Nanoseconds (CDMA E911 J MRs)		Х		OCXO (HS)	24 +
Information Technology Sector	20 to 100 Nanoseconds (PTP)*		Х		OCXO (MS)	1
Banking and Finance Sector	Millisecond- Microsecond (HFT)^	Х	Х	Х	тсхо	< .24 -1.7
Energy/Electric Power Subsector	1-4.6 Microsecond (Synchro- Phasors; Fault Loc.)		Х		OCXO (MS)	1
Energy/Oil and Natural Gas Sector Subsector	Microsecond (exploration, SCADA)		Х	Х	OCXO (MS)	1
Nuclear Sector	1 Microsecond (Synchro- Phasors)		Х		OCXO (MS)	1
Dams Sector	1 Microsecond (Synchro- Phasors)		Х		OCXO (MS)	1
Chemical Sector	Sub Microsecond- Microsecond		Х		OCXO (MS)	1
Critical Manufacturing Sector	Millisecond	Х	Х		ТСХО	1.7
Defense Industrial Base Sector	Millisecond	Х	Х		ТСХО	1.7
Transportation Sector	~ Nanoseconds (Wireless modal comms)		Х	Х	OCXO (HS)	24 +

CIKR Impacts Under GPS Outage

GPS Timing Essential CIKR Sector	Least Robust Oscillator	Holdover Time (hours)	Unintentional Interference impact: 8 hours (Y or N)	Intentional Jamming impact: Multiple Days (Y or N)	Space Weather impact: 16 hours (Y or N)
Communications Sector	OCXO (HS)	24 *	N	Y	N
Emergency Services Sector	OCXO (HS)	24 *	Ν	Y	N
Information Technology Sector^	OCXO (MS)	1#	Y	Y	Y
Banking and Finance Sector	тсхо	< .24 -1.7 #	Y	Y	Y
Energy/Electric Power Subsector	OCXO (MS)	1 #	Y	Y	Y
Energy/Oil and Natural Gas Sector Subsector	OCXO (MS)	1 #	Y	Y	Y
Nuclear Sector	OCXO (MS)	1 [#]	Y	Y	Y
Dams Sector	OCXO (MS)	1 #	Y	Y	Y
Chemical Sector	OCXO (MS)	1 #	Y	Y	Y
Critical Manufacturing Sector	ТСХО	1.7 #	Y	Y	Y
Defense Industrial Base Sector	тсхо	1.7 #	Y	Y	Y
Transportation Sector	OCXO (HS)	24 *	Ν	Y	Ν

Space Weather Planning Scenario

Impact on GPS and CI Feb 20 – 24 <u>> R4 Solar Event Scenario</u>

- An R4 event is caused by a disturbances of the iono caused by X-ray emissions from the Sun.
 - A "Severe" (R4) High Frequency (HF) radio frequency everation communications blackout on most of the sunlit sid Earth for one to two hours. HF radio contact lost during time.
- GPS Impacts: Loss of signal due to:
 - lonospheric plasma density irregularities
 - Refraction and diffraction of GPS signal propagating through the irregularity
 - Rapid amplitude and phase variations
 - Locations:
 - Night-time equatorial regions (severe, common)
 - Polar regions (usually mild, rare)
 - All latitudes during geomagnetic storms (severe, rare)
 - Time Duration of Event: 10s of minutes to multiple hours over multiple days
- Radar degradation due to similar causes as HF radio GPS signal impacts described above

Impacts on GPS and CI from 25-26 FEB C Geomagnetic Storm Scenario

- Electric Power outages due to:
 - Geomagnetic Storm induces ground currents and Earth surface potentials
 - Geomagnetically Induced Currents (GIC) at substations (dam equipment) and on power lines (causes faults\lines to trip or service)
 - Loss of control caused by corrupted grid state estimation\sit awareness due to loss of GPS timing synchronization of data SCADA and Synchrophasors
- Communications degradations consist of:
 - HF Blackouts
 - Satellite communications losses
 - CDMA Cellular and Land Mobile Radio Simulcast loss due to timing synchronization

	Solar Storm Effect	Single Frequency GPS Timing Error (Range)	Single Frequency GPS Position Error (Range)	Time of Day	Duration of Event
GPS Impacts	TEC increase in ionosphere	Less than 100 ns Typical 10-30 ns	Less than 100 m Typical 10-20 m	Day side of the earth	Hours to days
	-scintillation	Less than 100 ns for individual satellites	Loss of precision due to loss or corruption of individual GPS satellites	Worse in early evening	Individual events minutes but can persist for hours to days (diurnal)
	-solar radio bursts	Severe events can deny GPS reception	Severe events can deny GPS reception	Day side of the earth	Minutes to hours (duration of the solar burst)

Geomagnetic Storm Caused Regional Power Outages

Power System Disturbance and Outage Scenario of Unprecedented Scale

SourceKappenman, J. 2010. "Electric Power Grid Vulnerability to Geomagnetic Storms."