Explainable Artificial Intelligence (XAI)

Approved for public release: distribution unlimited.

The Need for Explainable AI

- We are entering a new age of AI applications
- Machine learning is the core technology
- Machine learning models are opaque, non-intuitive, and difficult for people to understand

- Why did you do that?
- Why not something else?
- When do you succeed?
- When do you fail?
- When can I trust you?
- How do I correct an error?

- The current generation of AI systems offer tremendous benefits, but their effectiveness will be limited by the machine's inability to explain its decisions and actions to users
- Explainable AI will be essential if users are to understand, appropriately trust, and effectively manage this incoming generation of artificially intelligent partners

XAI In the News

Intelligent Machines

Are Asked to Explain

How Their Minds

Richard Waters

MIT Technology Review

The Dark Secret at the Heart of AI Will Knight April 11, 2017

Inside DARPA's Push to Make Artificial Intelligence **Explain Itself** Sara Castellanos and Steven Norton August 10, 2017

he A Register

You better explain yourself, mister: DARPA's mission to make an accountable AI Dan Robinson September 29, 2017

Team investigates artificial

in DARPA project

Lisa Daigle

June 14, 2017

intelligence, machine learning

ExecutiveBiz

Charles River Analytics-Led Team Gets DARPA Contract to Support Artificial Intelligence Program

Ramona Adams June 13, 2017

The New Hork Times Magazine

Can A.I. Be

Explain Itself?

November 21, 2017

Taught to

Cliff Kuang

FAST @MPANY

Why The Military And Corporate America Want To Make AI Explain Ghosts in the Machine

How AI detectives are cracking open the black box of deep learning

AAAAS

Paul Voosen July 6, 2017

Black Box That Is AI Ariel Bleicher August 9, 2017

Christina Couch

October 25, 2017

Approved for public release: distribution unlimited.

Entrepreneur

Work

July 11, 2017 INANCIA

Elon Musk and Mark Zuckerberg Are Arguing About AI -- But They're Both Missing the Point

Artur Kiulian July 28, 2017

DARPA's XAL seeks explanations from autonomous systems Geoff Fein November 16, 2017

researching 'Explainable AI' George Nott May 5, 2017

Science

Deep Learning Neural Networks Architecture and How They Work

Approved for public release: distribution unlimited.

An analyst is looking for items of interest in massive multimedia data sets

An operator is directing autonomous systems to accomplish a series of missions

- XAI will create a suite of machine learning techniques that
 - Produce more explainable models, while maintaining a high level of learning performance (e.g., prediction accuracy)
 - Enable human users to understand, appropriately trust, and effectively manage the emerging generation of artificially intelligent partners

Approaches to Deep Explanation (Berkeley, SRI, Raytheon BBN, OSU, CRA, PARC)

Attention Mechanisms

Feature Identification

Modular Networks

Learn to Explain

Approved for public release: distribution unlimited.

Network Dissection Quantifying Interpretability of Deep Representations (MIT)

Indoor objects 182) food

53) staircase

Interpretation of several units in pool5 of AlexNet trained for place recognition

Audit trail: for a particular output unit, the drawing shows the most strongly activated path

<u>Causal Model Induction</u>: Experiment with the learned model (as a grey box) to learn an explainable, causal, probabilistic programming model

Explanation by Selection of Teaching Examples (Rutgers)

BAYESIAN TEACHING for optimal selection of examples for machine explanation

Common Ground Learning and Explanation (COGLE)

An interactive sensemaking system to explain the learned performance capabilities of a UAS flying in an ArduPilot simulation testbed

Series 1. Primitives: Navigating with Constraints and Lookahead	7
Lesson 1.1: Taking off	7
Lesson 1.2: Taking off and Landing	9
Lesson 1.3: Reconnaissance Over a Point (3 Months)	
Lesson 1.4: Looking Ahead to Avoid Crashing into Mountains	13
Lesson 1.5: Choosing a Safe Descent Approach for Landing	15
Lesson 1.6: Provisioning a Hiker (6 months)	17
Series 2. Behaviors: Managing Competing Goals and Foraging	
Lesson 2.1: Provisioning a Hiker in a Box Canvon (opt)	
Lesson 2.2: Taking an Inventory of a Region and Refueling (opt)	
Lesson 2.3: Foraging Around a Point for a Hiker (opt)	
Lesson 2.4: Foraging Around a Point with an Interfering Obstacle	
Series 3. Missions: Harder Missions and Heavy Testing	
Lesson 31: Double Hiker Jeopardy (9 months)	28
Lesson 3 2: Bear on the Runway	30
Lesson 3.3: Auto-Generated Missions with Testing (12 months)	32
Lessen der rate den rate in second with resting (12 months)	

Explanation-Informed Acceptance Testing of Deep Adaptive Programs (xACT)

Tools for explaining deep adaptive programs and discovering best principles for designing explanation user interfaces

Robotics Curriculum

Analytic (didactic) statements

in natural language that describe the elements and context that support a choice

Visualizations

that directly highlight portions of the raw data that support a choice and allow viewers to form their own perceptual understanding

Explanation Modes

Cases

that invoke specific examples or stories that support the choice

Rejections of alternative choices (or "common misconceptions" in pedagogy) that argue against less preferred answers based on analytics, cases, and data

XAI Program Structure

- TA1: Explainable Learners
 - Multiple TA1 teams will develop prototype explainable learning systems that include both an explainable model and an explanation interface
- TA2: Psychological Model of Explanation
 - At least one TA2 team will summarize current psychological theories of explanation and develop a computational model of explanation from those theories

Analytics Autonomy Visual Question Answering Strategy Games NovieQA CLEVR Starcraft2 **ELF-MiniRTS Activity Recognition** Vehicle Control Second tier hird tier lop leve Household activities Housework Interior cleaning Cleaning window: **Driving Simulator** ArduPilot 21 2

	ADD	MAY		201	.7			C IAN		NAAP		MAY	20)18	AUG	CE	R OCT	NO	DEC		EER	MAR			2019) 1 Au			NOV	DEC		CCD I	MAR 4		2	2020)	6 551	D OCT	NOV	DEC		202	1	
	AFN	PHASE 1: Technology Demonstrations								NO	PHASE 2: Comparative Evaluations																																		
							Ι		L						L		L																				<u> </u>	T							
Evaluator		Γ)efii	ne Ev	alua	atior	ר Fr	am	ew	ork			Prej Eva	p fo al 1	or L	E	ival 1	A R	naly esu	/ze lts		Pre	ep fo	or Ev	val 2	<u>)</u>	E	ival 2	Ar Re	naly esu	/ze lts		Pre	p fo	or Ev	val 3	3	E	ival 3	Ana Ad	alyze ccep	e Re t To	esults polkit	s & ts	
																																					\Box								
TA 1		Develop & Demonstrate Explainable Models (against proposed problems) 1														Refine & Test Expl Learners (against common p							lainable Eval 2 problems)					Refine & Test Explainable Learners (against common problems)							Deliver Software Toolkits										
			Γ				Ι										Γ																			Ι	L	Ι							
TA 2		Summarize Current Psychological Development Theories of Explanation					/elc	op C	Computational Model o Explanation							:	Re Compi						Ref	efine & Test utational Model							Deliver Computational Model														
Meetings			F													-																					$\overline{+}$	Ŧ							
	Ki	ckOff		F	Prog	ress	Re	por	t	T	ecl	n De	emo	DS					E	val	1 Re	sul	ts							E١	val 2	Re	sult	s								F	inal		
1	May	y 9-1	1		Ν	lov	6-	8			Ma	ay i	7-9)																															

- Technical Area 1 (Explainable Learners) Milestones
 - Demonstrate the explainable learners against problems proposed by the developers (Phase 1)
 - Demonstrate the explainable learners against common problems (Phase 2)
 - Deliver software libraries and toolkits (at the end of Phase 2)
- Technical Area 2 (Psychology of Explanation) Milestones
 - Deliver an interim report on psychological theories (after 6 months during Phase 1)
 - Deliver a final report on psychological theories (after 12 months, during Phase 1)
 - Deliver a computational model of explanation (after 24 months, during Phase 2)
 - Deliver the computational model software (at the end of Phase 2)

DARPA XAI Developers (TA1)

СР	Performer	Explainable Model	Explanation Interface						
_	UC Berkeley	Deep Learning	Reflexive and Rational						
Both	Charles River	Causal Modeling	Narrative Generation						
	UCLA	Pattern Theory+	3-level Explanation						
my	Oregon State	Adaptive Programs	Acceptance Testing						
tono	PARC	Cognitive Modeling	Interactive Training						
Aut	CMU	Explainable RL (XRL)	XRL Interaction						
	SRI International	Deep Learning	Show and Tell Explanation						
ics	Raytheon BBN	Deep Learning	Argumentation and Pedagogy						
alyt	UT Dallas	Probabilistic Logic	Decision Diagrams						
An	Texas A&M	Mimic Learning	Interactive Visualization						
	Rutgers	Model Induction	Bayesian Teaching						

Deeply Explainable Artificial Intelligence

Explainable Model

Explanation Interface

Deep Learning

- Explain *implicit* (latent) nodes by training additional DL models
- Explain *explicit* nodes thru Neural Module Networks (NMNs)

Reflexive & Rational

- Reflexive explanations (that arise directly from the model)
- Rational explanations (that come from reasoning about user's beliefs)

Autonomy

Challenge Problem

 ArduPilot and OpenAl Gym Simulations

Data Analytics

 Visual QA and Multimedia Event QA

- **PI**: Trevor Darrell (Berkeley)
- Pieter Abbeel (Berkeley)
- Tom Griffiths (Berkeley)
- Kate Saenko (BU)
- Zeynep Akata (U. Amsterdam)

- Dan Klein (Berkeley)
- John Canny (Berkeley)
- Anca Dragan (Berkeley)
- Anthony Hoogs (Kitware)

CAMEL: Causal Models to Explain Learning

Explainable Model

Model Induction

Causal Models

• Experiment with the

learned model (as a

explainable, causal,

programming model

grey box) to learn an

Explanation Interface

Narrative Generation

 Interactive visualization based on the generation of temporal, spatial narratives from the causal, probabilistic models

Challenge Problem

Autonomy

• Minecraft, Starcraft

Data Analytics

 Pedestrian Detection (INRIA), Activity Recognition (ActivityNet)

- **PI**: Brian Ruttenberg (CRA)
- Avi Pfeffer (CRA)

probabilistic

- David Jensen (U. Mass)
- Michael Littman (Brown)
- James Niehaus (CRA)
- Emilie Roth (Roth Cognitive Engineering)
- Joe Gorman(CRA)
- James Tittle (CRA)

Learning and Communicating Explainable Representations for Analytics and Autonomy

Explainable Model

Explanation Interface

Challenge Problem

Pattern Theory+

- Integrated representation across an entropy spectrum:
 - Deep Neural Nets
 - Stochastic And-Or-Graphs (AOG)
 - Predicate Calculus

3-Level Explanation

- Integrate 3 levels of explanation:
 - Concept compositions
 - Causal and counterfactual reasoning
 - Utility explanations

Autonomy

Humanoid robot behavior and VR simulation platform

Data Analytics

 Understanding complex multimedia events

- **PI**: Song-Chun Zhu (UCLA)
- Ying Nian Wu (UCLA)
- Sinisa Todorovic (OSU)
- Joyce Chai (Michigan State)

xACT: Explanation-Informed Acceptance Testing of Deep Adaptive Programs

Explainable Model

Explanation Interface

Challenge Problem

Adaptive Programs

 Explainable Deep Adaptive Programs (xDAPs) – a new combination of Adaptive Programs, Deep Learning and explainability

Acceptance Testing

 Provides a visual & NL explanation interface for acceptance testing by test pilots based on Information Foraging Theory

Autonomy

- Real-Time Strategy Games based on custom designed game engine designed to support explanation
- Possible use of Starcraft

• PI: Alan Fern (OSU)

- Tom Dietterich (OSU)
- Fuxin Li (OSU)
- Prasad Tadepalli (OSU)
- Weng-Keen Wong (OSU)
- Margaret Burnett (OSU)
- Martin Erwig (OSU)
- Liang Huang (OSU)

COGLE: Common Ground Learning and Explanation

Explainable Model

Explanation Interface

Challenge Problem

Cognitive Model

- 3-layer architecture:
 - Learning Layer (DNNs)
 - Cognitive Layer
 (ACT-R Cog. Model)
 - Explanation Layer (HCI)

Interactive Training

- Interactive visualization of states, actions, policies & values
- Includes a module for test pilots to refine and train the system

Autonomy

- ArduPilot simulation
 environment
- Value of Explanation (VoE) framework for measuring explanation effectiveness

- PI: Mark Stefik (PARC)
- Honglak Lee (U. Mich.)
- Subramanian Ramamoorthy (U. Edinburgh)

- Christian Lebiere (CMU)
- John Anderson (CMU)
- Robert Thomson (USMA)
- Michael Youngblood (PARC)

XRL: Explainable Reinforcement Learning for AI Autonomy

Explainable Model

Explanation Interface

Challenge Problem

XRL Models

 Create a new scientific discipline for Explainable Reinforcement Learning with work on new algorithms and representations

XRL Interaction

- Interactive explanations of dynamic systems
- Human-machine
 interaction to improve
 performance

Autonomy

- Open AI Gym
- Autonomy in the electrical grid
- Mobile service robots
- Self-improving educational software

- PI: Geoff Gordon (CMU)
- Zico Kolter (CMU)
- Pradeep Ravikumar (CMU)
- Manuela Veloso (CMU)
- Emma Brunskill (Stanford)

DARE: Deep Attention-based Representations for Explanation

- Shalini Ghosh (SRI)
- Avi Ziskind (SRI)
- Michael Wessel (SRI)
- Richard R. Zemel (U. Toronto)
- Sanja Fidler (U. Toronto)
- David Duvenaud (U. Toronto)
- Graham Taylor (U. Guelph)

Jürgen Schulze (UCSD)

EQUAS: Explainable QUestion Answering System

- PI: William Ferguson (Raytheon BBN)
- Antonio Torralba (MIT)
- Ray Mooney (UT Austin)
- Devi Parikh (GA Tech)
- Dhruv Batra (GA Tech)

Tractable Probabilistic Logic Models: A New, Deep Explainable Representation

Explainable Model

Explanation Interface

Challenge Problem

Probabilistic Logic

 Tractable Probabilistic Logic Models (TPLMs) - an important class of (non-deep learning) interpretable models

Probabilistic Decision Diagrams

 Enables users to explore and correct the underlying model as well as add background knowledge

Data Analytics

- Infer activities in multimodal data (video and text)
- Using the Wetlab (biology) and TACoS (cooking) datasets

- **PI**: Vibhav Gogate (UT Dallas)
- Adnan Darwiche (UCLA)
- Guy Van Den Broeck (UCLA) Parag Singla (IIT-Delhi)
- Nicholas Ruozzi (UT Dallas)
- Eric Ragan (Texas A&M)

Approved for public release: distribution unlimited.

Transforming Deep Learning to Harness the Interpretability of Shallow Models: An Interactive End-to-End System

Explainable Model

Explanation Interface

Challenge Problem

Mimic Learning

 Develop a mimic learning framework that combines deep learning models for prediction and shallow models for explanations

Interactive Visualization

 Interactive visualization over multiple views, using heat maps & topic modeling clusters to show predictive features

Data Analytics

- Multiple tasks using data from Twitter, Facebook, ImageNet, UCI, NIST and Kaggle
- Metrics for explanation effectiveness

- PI: Xia Hu (Texas A&M)
- Shuiwang Ji (Wash. State) Eric Ragan (Texas A&M)

Model Explanation by Optimal Selection of Teaching Examples

Explainable Model

Explanation Interface

Challenge Problem

Model Induction

 Select the optimal training examples to explain model decisions based on Bayesian Teaching

Bayesian Teaching

- Example-based explanation of:
 - the full model
 - user-selected substructure
 - user submitted examples

Data Analytics

- Movie descriptions
- Image processing
- Caption data
- Movie events
- Human motion events

- PI: Patrick Shafto (Rutgers)
- Scott Cheng-Hsin Yang (Rutgers)

Naturalistic Decision Making Foundations of Explainable AI

Literature Review

Naturalistic Theory

- Extensive review of relevant psychological theories
- Extend the theory of Naturalistic Decision Making to cover explanation

Computational Model

Bayesian Framework

- Represent reductionist mental models that humans develop as part of the explanatory process
- Including mental simulation

Model Validation

Experiments

- Conduct interactive assessment and formal human experiments
- Validate the model
- Develop metrics of explanation effectiveness

- PI: Robert R. Hoffman (IHMC)
- Gary Klein (MacroCognition)
- Shane T. Mueller (Michigan Tech)
- William J. Clancey (IHMC)
- COL Timothy M. Cullen (SAASS)
- Jordan Litman (IHMC Psychometrician)
- Simon Attfield (Middlesex University-London)
- Peter Pirolli (IHMC)

XAI Evaluation

Challenge Problems

Autonomy

Evaluation Framework

- Evaluation protocols
- Training environment
 - Training data
 - Simulation environment
- Testing environment
 - Subjects
 - Web infrastructure
- Baseline systems

Measurement

• PI: David Aha (NRL)

- Justin Karneeb (Knexus)
- Matt Molineaux (Knexus)
- Leslie Smith (NRL)

• Mike Pazzani (UC Riverside)

